Discover more content...

Discover more content...

Enter some keywords in the search box above, we will do our best to offer you relevant results.

Results

We're sorry!

Sorry about that!

We couldn't find any results for your search. Please try again with another keywords.

神经病院 Objective-C Runtime 入院第一天—— isa 和 Class

前言

我第一次开始重视Objective-C Runtime是从2014年11月1日,@唐巧老师在微博上发的一条微博开始。

这是sunnyxx在线下的一次分享会。会上还给了4道题目。

这4道题以我当时的知识,很多就不确定,拿不准。从这次入院考试开始,就成功入院了。后来这两年对Runtime的理解慢慢增加了,打算今天自己总结总结平时一直躺在我印象笔记里面的笔记。有些人可能有疑惑,学习Runtime到底有啥用,平时好像并不会用到。希望看完我这次的总结,心中能解开一些疑惑。

目录

  • 1.Runtime简介
  • 2.NSObject起源
    • (1) isa_t结构体的具体实现
    • (2) cache_t的具体实现
    • (3) class_data_bits_t的具体实现
  • 3.入院考试

一. Runtime简介

Runtime 又叫运行时,是一套底层的 C 语言 API,是 iOS 系统的核心之一。开发者在编码过程中,可以给任意一个对象发送消息,在编译阶段只是确定了要向接收者发送这条消息,而接受者将要如何响应和处理这条消息,那就要看运行时来决定了。

C语言中,在编译期,函数的调用就会决定调用哪个函数。
而OC的函数,属于动态调用过程,在编译期并不能决定真正调用哪个函数,只有在真正运行时才会根据函数的名称找到对应的函数来调用。

Objective-C 是一个动态语言,这意味着它不仅需要一个编译器,也需要一个运行时系统来动态得创建类和对象、进行消息传递和转发。

Objc 在三种层面上与 Runtime 系统进行交互:

1. 通过 Objective-C 源代码

一般情况开发者只需要编写 OC 代码即可,Runtime 系统自动在幕后把我们写的源代码在编译阶段转换成运行时代码,在运行时确定对应的数据结构和调用具体哪个方法。

2. 通过 Foundation 框架的 NSObject 类定义的方法

在OC的世界中,除了NSProxy类以外,所有的类都是NSObject的子类。在Foundation框架下,NSObject和NSProxy两个基类,定义了类层次结构中该类下方所有类的公共接口和行为。NSProxy是专门用于实现代理对象的类,这个类暂时本篇文章不提。这两个类都遵循了NSObject协议。在NSObject协议中,声明了所有OC对象的公共方法。

在NSObject协议中,有以下5个方法,是可以从Runtime中获取信息,让对象进行自我检查。

- (Class)class OBJC_SWIFT_UNAVAILABLE("use 'anObject.dynamicType' instead");
- (BOOL)isKindOfClass:(Class)aClass;
- (BOOL)isMemberOfClass:(Class)aClass;
- (BOOL)conformsToProtocol:(Protocol *)aProtocol;
- (BOOL)respondsToSelector:(SEL)aSelector;

-class方法返回对象的类;
-isKindOfClass: 和 -isMemberOfClass: 方法检查对象是否存在于指定的类的继承体系中;
-respondsToSelector: 检查对象能否响应指定的消息;
-conformsToProtocol:检查对象是否实现了指定协议类的方法;

在NSObject的类中还定义了一个方法


- (IMP)methodForSelector:(SEL)aSelector;

这个方法会返回指定方法实现的地址IMP。

以上这些方法会在本篇文章中详细分析具体实现。

3. 通过对 Runtime 库函数的直接调用

关于库函数可以在Objective-C Runtime Reference中查看 Runtime 函数的详细文档。

关于这一点,其实还有一个小插曲。当我们导入了objc/Runtime.h和objc/message.h两个头文件之后,我们查找到了Runtime的函数之后,代码打完,发现没有代码提示了,那些函数里面的参数和描述都没有了。对于熟悉Runtime的开发者来说,这并没有什么难的,因为参数早已铭记于胸。但是对于新手来说,这是相当不友好的。而且,如果是从iOS6开始开发的同学,依稀可能能感受到,关于Runtime的具体实现的官方文档越来越少了?可能还怀疑是不是错觉。其实从Xcode5开始,苹果就不建议我们手动调用Runtime的API,也同样希望我们不要知道具体底层实现。所以IDE上面默认代了一个参数,禁止了Runtime的代码提示,源码和文档方面也删除了一些解释。

具体设置如下:

如果发现导入了两个库文件之后,仍然没有代码提示,就需要把这里的设置改成NO,即可。

二. NSObject起源

由上面一章节,我们知道了与Runtime交互有3种方式,前两种方式都与NSObject有关,那我们就从NSObject基类开始说起。

以下源码分析均来自objc4-680

NSObject的定义如下


typedef struct objc_class *Class;

@interface NSObject <NSObject> {
    Class isa  OBJC_ISA_AVAILABILITY;
}

在Objc2.0之前,objc_class源码如下:


struct objc_class {
    Class isa  OBJC_ISA_AVAILABILITY;
    
#if !__OBJC2__
    Class super_class                                        OBJC2_UNAVAILABLE;
    const char *name                                         OBJC2_UNAVAILABLE;
    long version                                             OBJC2_UNAVAILABLE;
    long info                                                OBJC2_UNAVAILABLE;
    long instance_size                                       OBJC2_UNAVAILABLE;
    struct objc_ivar_list *ivars                             OBJC2_UNAVAILABLE;
    struct objc_method_list **methodLists                    OBJC2_UNAVAILABLE;
    struct objc_cache *cache                                 OBJC2_UNAVAILABLE;
    struct objc_protocol_list *protocols                     OBJC2_UNAVAILABLE;
#endif
    
} OBJC2_UNAVAILABLE;

在这里可以看到,在一个类中,有超类的指针,类名,版本的信息。
ivars是objc_ivar_list成员变量列表的指针;methodLists是指向objc_method_list指针的指针。*methodLists是指向方法列表的指针。这里如果动态修改*methodLists的值来添加成员方法,这也是Category实现的原理,同样解释了Category不能添加属性的原因。

关于Category,这里推荐2篇文章可以仔细研读一下。
深入理解Objective-C:Category
结合 Category 工作原理分析 OC2.0 中的 runtime

然后在2006年苹果发布Objc 2.0之后,objc_class的定义就变成下面这个样子了。


typedef struct objc_class *Class;
typedef struct objc_object *id;

@interface Object { 
    Class isa; 
}

@interface NSObject <NSObject> {
    Class isa  OBJC_ISA_AVAILABILITY;
}

struct objc_object {
private:
    isa_t isa;
}

struct objc_class : objc_object {
    // Class ISA;
    Class superclass;
    cache_t cache;             // formerly cache pointer and vtable
    class_data_bits_t bits;    // class_rw_t * plus custom rr/alloc flags
}

union isa_t 
{
    isa_t() { }
    isa_t(uintptr_t value) : bits(value) { }
    Class cls;
    uintptr_t bits;
}

把源码的定义转化成类图,就是上图的样子。

从上述源码中,我们可以看到,Objective-C 对象都是 C 语言结构体实现的,在objc2.0中,所有的对象都会包含一个isa_t类型的结构体。

objc_object被源码typedef成了id类型,这也就是我们平时遇到的id类型。这个结构体中就只包含了一个isa_t类型的结构体。这个结构体在下面会详细分析。

objc_class继承于objc_object。所以在objc_class中也会包含isa_t类型的结构体isa。至此,可以得出结论:Objective-C 中类也是一个对象。在objc_class中,除了isa之外,还有3个成员变量,一个是父类的指针,一个是方法缓存,最后一个这个类的实例方法链表。

object类和NSObject类里面分别都包含一个objc_class类型的isa。

上图的左半边类的关系描述完了,接着先从isa来说起。

当一个对象的实例方法被调用的时候,会通过isa找到相应的类,然后在该类的class_data_bits_t中去查找方法。class_data_bits_t是指向了类对象的数据区域。在该数据区域内查找相应方法的对应实现。

但是在我们调用类方法的时候,类对象的isa里面是什么呢?这里为了和对象查找方法的机制一致,遂引入了元类(meta-class)的概念。

关于元类,更多具体可以研究这篇文章What is a meta-class in Objective-C?

在引入元类之后,类对象和对象查找方法的机制就完全统一了。

对象的实例方法调用时,通过对象的 isa 在类中获取方法的实现。
类对象的类方法调用时,通过类的 isa 在元类中获取方法的实现。

meta-class之所以重要,是因为它存储着一个类的所有类方法。每个类都会有一个单独的meta-class,因为每个类的类方法基本不可能完全相同。

对应关系的图如下图,下图很好的描述了对象,类,元类之间的关系:

图中实线是 super_class指针,虚线是isa指针。

  1. Root class (class)其实就是NSObject,NSObject是没有超类的,所以Root class(class)的superclass指向nil。
  2. 每个Class都有一个isa指针指向唯一的Meta class
  3. Root class(meta)的superclass指向Root class(class),也就是NSObject,形成一个回路。
  4. 每个Meta class的isa指针都指向Root class (meta)。

我们其实应该明白,类对象和元类对象是唯一的,对象是可以在运行时创建无数个的。而在main方法执行之前,从 dyld到runtime这期间,类对象和元类对象在这期间被创建。具体可看sunnyxx这篇iOS 程序 main 函数之前发生了什么

(1)isa_t结构体的具体实现

接下来我们就该研究研究isa的具体实现了。objc_object里面的isa是isa_t类型。通过查看源码,我们可以知道isa_t是一个union联合体。


struct objc_object {
private:
    isa_t isa;
public:
    // initIsa() should be used to init the isa of new objects only.
    // If this object already has an isa, use changeIsa() for correctness.
    // initInstanceIsa(): objects with no custom RR/AWZ
    void initIsa(Class cls /*indexed=false*/);
    void initInstanceIsa(Class cls, bool hasCxxDtor);
private:
    void initIsa(Class newCls, bool indexed, bool hasCxxDtor);
}

那就从initIsa方法开始研究。下面以arm64为例。


inline void
objc_object::initInstanceIsa(Class cls, bool hasCxxDtor)
{
    initIsa(cls, true, hasCxxDtor);
}

inline void
objc_object::initIsa(Class cls, bool indexed, bool hasCxxDtor)
{
    if (!indexed) {
        isa.cls = cls;
    } else {
        isa.bits = ISA_MAGIC_VALUE;
        isa.has_cxx_dtor = hasCxxDtor;
        isa.shiftcls = (uintptr_t)cls >> 3;
    }
}

initIsa第二个参数传入了一个true,所以initIsa就会执行else里面的语句。



# if __arm64__
#   define ISA_MASK        0x0000000ffffffff8ULL
#   define ISA_MAGIC_MASK  0x000003f000000001ULL
#   define ISA_MAGIC_VALUE 0x000001a000000001ULL
    struct {
        uintptr_t indexed           : 1;
        uintptr_t has_assoc         : 1;
        uintptr_t has_cxx_dtor      : 1;
        uintptr_t shiftcls          : 33; // MACH_VM_MAX_ADDRESS 0x1000000000
        uintptr_t magic             : 6;
        uintptr_t weakly_referenced : 1;
        uintptr_t deallocating      : 1;
        uintptr_t has_sidetable_rc  : 1;
        uintptr_t extra_rc          : 19;
#       define RC_ONE   (1ULL<<45)
#       define RC_HALF  (1ULL<<18)
    };

# elif __x86_64__
#   define ISA_MASK        0x00007ffffffffff8ULL
#   define ISA_MAGIC_MASK  0x001f800000000001ULL
#   define ISA_MAGIC_VALUE 0x001d800000000001ULL
    struct {
        uintptr_t indexed           : 1;
        uintptr_t has_assoc         : 1;
        uintptr_t has_cxx_dtor      : 1;
        uintptr_t shiftcls          : 44; // MACH_VM_MAX_ADDRESS 0x7fffffe00000
        uintptr_t magic             : 6;
        uintptr_t weakly_referenced : 1;
        uintptr_t deallocating      : 1;
        uintptr_t has_sidetable_rc  : 1;
        uintptr_t extra_rc          : 8;
#       define RC_ONE   (1ULL<<56)
#       define RC_HALF  (1ULL<<7)
    };


ISA_MAGIC_VALUE = 0x000001a000000001ULL转换成二进制是11010000000000000000000000000000000000001,结构如下图:

关于参数的说明:

第一位index,代表是否开启isa指针优化。index = 1,代表开启isa指针优化。

在2013年9月,苹果推出了iPhone5s,与此同时,iPhone5s配备了首个采用64位架构的A7双核处理器,为了节省内存和提高执行效率,苹果提出了Tagged Pointer的概念。对于64位程序,引入Tagged Pointer后,相关逻辑能减少一半的内存占用,以及3倍的访问速度提升,100倍的创建、销毁速度提升。

在WWDC2013的《Session 404 Advanced in Objective-C》视频中,苹果介绍了 Tagged Pointer。 Tagged Pointer的存在主要是为了节省内存。我们知道,对象的指针大小一般是与机器字长有关,在32位系统中,一个指针的大小是32位(4字节),而在64位系统中,一个指针的大小将是64位(8字节)。

假设我们要存储一个NSNumber对象,其值是一个整数。正常情况下,如果这个整数只是一个NSInteger的普通变量,那么它所占用的内存是与CPU的位数有关,在32位CPU下占4个字节,在64位CPU下是占8个字节的。而指针类型的大小通常也是与CPU位数相关,一个指针所占用的内存在32位CPU下为4个字节,在64位CPU下也是8个字节。如果没有Tagged Pointer对象,从32位机器迁移到64位机器中后,虽然逻辑没有任何变化,但这种NSNumber、NSDate一类的对象所占用的内存会翻倍。如下图所示:

苹果提出了Tagged Pointer对象。由于NSNumber、NSDate一类的变量本身的值需要占用的内存大小常常不需要8个字节,拿整数来说,4个字节所能表示的有符号整数就可以达到20多亿(注:2^31=2147483648,另外1位作为符号位),对于绝大多数情况都是可以处理的。所以,引入了Tagged Pointer对象之后,64位CPU下NSNumber的内存图变成了以下这样:

关于Tagged Pointer技术详细的,可以看上面链接那个文章。

has_assoc
对象含有或者曾经含有关联引用,没有关联引用的可以更快地释放内存

has_cxx_dtor
表示该对象是否有 C++ 或者 Objc 的析构器

shiftcls
类的指针。arm64架构中有33位可以存储类指针。

源码中isa.shiftcls = (uintptr_t)cls >> 3;
将当前地址右移三位的主要原因是用于将 Class 指针中无用的后三位清除减小内存的消耗,因为类的指针要按照字节(8 bits)对齐内存,其指针后三位都是没有意义的 0。具体可以看从 NSObject 的初始化了解 isa这篇文章里面的shiftcls分析。

  • magic
    判断对象是否初始化完成,在arm64中0x16是调试器判断当前对象是真的对象还是没有初始化的空间。

  • weakly_referenced
    对象被指向或者曾经指向一个 ARC 的弱变量,没有弱引用的对象可以更快释放

  • deallocating
    对象是否正在释放内存

  • has_sidetable_rc
    判断该对象的引用计数是否过大,如果过大则需要其他散列表来进行存储。

  • extra_rc
    存放该对象的引用计数值减一后的结果。对象的引用计数超过 1,会存在这个这个里面,如果引用计数为 10,extra_rc的值就为 9。

ISA_MAGIC_MASK 和 ISA_MASK 分别是通过掩码的方式获取MAGIC值 和 isa类指针。


inline Class 
objc_object::ISA() 
{
    assert(!isTaggedPointer()); 
    return (Class)(isa.bits & ISA_MASK);
}

关于x86_64的架构,具体可以看从 NSObject 的初始化了解 isa文章里面的详细分析。

(2)cache_t的具体实现

还是继续看源码

struct cache_t {
    struct bucket_t *_buckets;
    mask_t _mask;
    mask_t _occupied;
}

typedef unsigned int uint32_t;
typedef uint32_t mask_t;  // x86_64 & arm64 asm are less efficient with 16-bits

typedef unsigned long  uintptr_t;
typedef uintptr_t cache_key_t;

struct bucket_t {
private:
    cache_key_t _key;
    IMP _imp;
}

根据源码,我们可以知道cache_t中存储了一个bucket_t的结构体,和两个unsigned int的变量。

mask:分配用来缓存bucket的总数。
occupied:表明目前实际占用的缓存bucket的个数。

bucket_t的结构体中存储了一个unsigned long和一个IMP。IMP是一个函数指针,指向了一个方法的具体实现。

cache_t中的bucket_t *_buckets其实就是一个散列表,用来存储Method的链表。

Cache的作用主要是为了优化方法调用的性能。当对象receiver调用方法message时,首先根据对象receiver的isa指针查找到它对应的类,然后在类的methodLists中搜索方法,如果没有找到,就使用super_class指针到父类中的methodLists查找,一旦找到就调用方法。如果没有找到,有可能消息转发,也可能忽略它。但这样查找方式效率太低,因为往往一个类大概只有20%的方法经常被调用,占总调用次数的80%。所以使用Cache来缓存经常调用的方法,当调用方法时,优先在Cache查找,如果没有找到,再到methodLists查找。

(3)class_data_bits_t的具体实现

源码实现如下:



struct class_data_bits_t {

    // Values are the FAST_ flags above.
    uintptr_t bits;
}

struct class_rw_t {
    uint32_t flags;
    uint32_t version;

    const class_ro_t *ro;

    method_array_t methods;
    property_array_t properties;
    protocol_array_t protocols;

    Class firstSubclass;
    Class nextSiblingClass;

    char *demangledName;
}

struct class_ro_t {
    uint32_t flags;
    uint32_t instanceStart;
    uint32_t instanceSize;
#ifdef __LP64__
    uint32_t reserved;
#endif

    const uint8_t * ivarLayout;
    
    const char * name;
    method_list_t * baseMethodList;
    protocol_list_t * baseProtocols;
    const ivar_list_t * ivars;

    const uint8_t * weakIvarLayout;
    property_list_t *baseProperties;

    method_list_t *baseMethods() const {
        return baseMethodList;
    }
};

在 objc_class结构体中的注释写到 class_data_bits_t相当于 class_rw_t指针加上 rr/alloc 的标志。


class_data_bits_t bits; // class_rw_t * plus custom rr/alloc flags

它为我们提供了便捷方法用于返回其中的 class_rw_t *指针:


class_rw_t *data() {
    return bits.data();
}

Objc的类的属性、方法、以及遵循的协议在obj 2.0的版本之后都放在class_rw_t中。class_ro_t是一个指向常量的指针,存储来编译器决定了的属性、方法和遵守协议。rw-readwrite,ro-readonly

在编译期类的结构中的 class_data_bits_t *data指向的是一个 class_ro_t *指针:

在运行时调用 realizeClass方法,会做以下3件事情:

  1. 从 class_data_bits_t调用 data方法,将结果从 class_rw_t强制转换为 class_ro_t指针
  2. 初始化一个 class_rw_t结构体
  3. 设置结构体 ro的值以及 flag

最后调用methodizeClass方法,把类里面的属性,协议,方法都加载进来。


struct method_t {
    SEL name;
    const char *types;
    IMP imp;

    struct SortBySELAddress :
        public std::binary_function<const method_t&,
                                    const method_t&, bool>
    {
        bool operator() (const method_t& lhs,
                         const method_t& rhs)
        { return lhs.name < rhs.name; }
    };
};

方法method的定义如上。里面包含3个成员变量。SEL是方法的名字name。types是Type Encoding类型编码,类型可参考Type Encoding,在此不细说。

IMP是一个函数指针,指向的是函数的具体实现。在runtime中消息传递和转发的目的就是为了找到IMP,并执行函数。

整个运行时过程可以描述如下:

更加详细的分析,请看@Draveness 的这篇文章深入解析 ObjC 中方法的结构

到此,总结一下objc_class 1.0和2.0的差别。

三. 入院考试

(一)[self class] 与 [super class]

下面代码输出什么?

    @implementation Son : Father
    - (id)init
    {
        self = [super init];
        if (self)
        {
            NSLog(@"%@", NSStringFromClass([self class]));
            NSLog(@"%@", NSStringFromClass([super class]));
        }
    return self;
    }
    @end

self和super的区别:

self是类的一个隐藏参数,每个方法的实现的第一个参数即为self。

super并不是隐藏参数,它实际上只是一个”编译器标示符”,它负责告诉编译器,当调用方法时,去调用父类的方法,而不是本类中的方法。

在调用[super class]的时候,runtime会去调用objc_msgSendSuper方法,而不是objc_msgSend


OBJC_EXPORT void objc_msgSendSuper(void /* struct objc_super *super, SEL op, ... */ )


/// Specifies the superclass of an instance. 
struct objc_super {
    /// Specifies an instance of a class.
    __unsafe_unretained id receiver;

    /// Specifies the particular superclass of the instance to message. 
#if !defined(__cplusplus)  &&  !__OBJC2__
    /* For compatibility with old objc-runtime.h header */
    __unsafe_unretained Class class;
#else
    __unsafe_unretained Class super_class;
#endif
    /* super_class is the first class to search */
};

在objc_msgSendSuper方法中,第一个参数是一个objc_super的结构体,这个结构体里面有两个变量,一个是接收消息的receiver,一个是
当前类的父类super_class。

入院考试第一题错误的原因就在这里,误认为[super class]是调用的[super_class class]。

objc_msgSendSuper的工作原理应该是这样的:
从objc_super结构体指向的superClass父类的方法列表开始查找selector,找到后以objc->receiver去调用父类的这个selector。注意,最后的调用者是objc->receiver,而不是super_class!

那么objc_msgSendSuper最后就转变成


// 注意这里是从父类开始msgSend,而不是从本类开始,谢谢@Josscii 和他同事共同指点出此处描述的不妥。
objc_msgSend(objc_super->receiver, @selector(class))

/// Specifies an instance of a class.  这是类的一个实例
    __unsafe_unretained id receiver;   


// 由于是实例调用,所以是减号方法
- (Class)class {
    return object_getClass(self);
}

由于找到了父类NSObject里面的class方法的IMP,又因为传入的入参objc_super->receiver = self。self就是son,调用class,所以父类的方法class执行IMP之后,输出还是son,最后输出两个都一样,都是输出son。

(二)isKindOfClass 与 isMemberOfClass

下面代码输出什么?


     @interface Sark : NSObject
     @end

     @implementation Sark
     @end

  int main(int argc, const char * argv[]) {
    @autoreleasepool {
        BOOL res1 = [(id)[NSObject class] isKindOfClass:[NSObject class]];
        BOOL res2 = [(id)[NSObject class] isMemberOfClass:[NSObject class]];
        BOOL res3 = [(id)[Sark class] isKindOfClass:[Sark class]];
        BOOL res4 = [(id)[Sark class] isMemberOfClass:[Sark class]];

        NSLog(@"%d %d %d %d", res1, res2, res3, res4);
    }
    return 0;
  }

先来分析一下源码这两个函数的对象实现



+ (Class)class {
    return self;
}

- (Class)class {
    return object_getClass(self);
}

Class object_getClass(id obj)
{
    if (obj) return obj->getIsa();
    else return Nil;
}

inline Class 
objc_object::getIsa() 
{
    if (isTaggedPointer()) {
        uintptr_t slot = ((uintptr_t)this >> TAG_SLOT_SHIFT) & TAG_SLOT_MASK;
        return objc_tag_classes[slot];
    }
    return ISA();
}

inline Class 
objc_object::ISA() 
{
    assert(!isTaggedPointer()); 
    return (Class)(isa.bits & ISA_MASK);
}

+ (BOOL)isKindOfClass:(Class)cls {
    for (Class tcls = object_getClass((id)self); tcls; tcls = tcls->superclass) {
        if (tcls == cls) return YES;
    }
    return NO;
}

- (BOOL)isKindOfClass:(Class)cls {
    for (Class tcls = [self class]; tcls; tcls = tcls->superclass) {
        if (tcls == cls) return YES;
    }
    return NO;
}

+ (BOOL)isMemberOfClass:(Class)cls {
    return object_getClass((id)self) == cls;
}

- (BOOL)isMemberOfClass:(Class)cls {
    return [self class] == cls;
}

首先题目中NSObject 和 Sark分别调用了class方法。

+ (BOOL)isKindOfClass:(Class)cls方法内部,会先去获得object_getClass的类,而object_getClass的源码实现是去调用当前类的obj->getIsa(),最后在ISA()方法中获得meta class的指针。

接着在isKindOfClass中有一个循环,先判断class是否等于meta class,不等就继续循环判断是否等于super class,不等再继续取super class,如此循环下去。

[NSObject class]执行完之后调用isKindOfClass,第一次判断先判断NSObject 和 NSObject的meta class是否相等,之前讲到meta class的时候放了一张很详细的图,从图上我们也可以看出,NSObject的meta class与本身不等。接着第二次循环判断NSObject与meta class的superclass是否相等。还是从那张图上面我们可以看到:Root class(meta) 的superclass 就是 Root class(class),也就是NSObject本身。所以第二次循环相等,于是第一行res1输出应该为YES。

同理,[Sark class]执行完之后调用isKindOfClass,第一次for循环,Sark的Meta Class与[Sark class]不等,第二次for循环,Sark Meta Class的super class 指向的是 NSObject Meta Class, 和 Sark Class不相等。第三次for循环,NSObject Meta Class的super class指向的是NSObject Class,和 Sark Class 不相等。第四次循环,NSObject Class 的super class 指向 nil, 和 Sark Class不相等。第四次循环之后,退出循环,所以第三行的res3输出为NO。

如果把这里的Sark改成它的实例对象,[sark isKindOfClass:[Sark class],那么此时就应该输出YES了。因为在isKindOfClass函数中,判断sark的isa指向是否是自己的类Sark,第一次for循环就能输出YES了。

isMemberOfClass的源码实现是拿到自己的isa指针和自己比较,是否相等。
第二行isa 指向 NSObject 的 Meta Class,所以和 NSObject Class不相等。第四行,isa指向Sark的Meta Class,和Sark Class也不等,所以第二行res2和第四行res4都输出NO。

(三)Class与内存地址

下面的代码会?Compile Error / Runtime Crash / NSLog…?


    @interface Sark : NSObject
    @property (nonatomic, copy) NSString *name;
    - (void)speak;
    @end
    @implementation Sark
    - (void)speak {                            
       NSLog(@"my name's %@", self.name);
    }
    @end
    @implementation ViewController
    - (void)viewDidLoad {  
       [super viewDidLoad];
       id cls = [Sark class];
       void *obj = &cls;
       [(__bridge id)obj speak];
    }
    @end

这道题有两个难点。难点一,obj调用speak方法,到底会不会崩溃。难点二,如果speak方法不崩溃,应该输出什么?

首先需要谈谈隐藏参数self和_cmd的问题。
当[receiver message]调用方法时,系统会在运行时偷偷地动态传入两个隐藏参数self和_cmd,之所以称它们为隐藏参数,是因为在源代码中没有声明和定义这两个参数。self在上面已经讲解明白了,接下来就来说说_cmd。_cmd表示当前调用方法,其实它就是一个方法选择器SEL。

难点一,能不能调用speak方法?


id cls = [Sark class]; 
void *obj = &cls;

答案是可以的。obj被转换成了一个指向Sark Class的指针,然后使用id转换成了objc_object类型。obj现在已经是一个Sark类型的实例对象了。当然接下来可以调用speak的方法。

难点二,如果能调用speak,会输出什么呢?

很多人可能会认为会输出sark相关的信息。这样答案就错误了。

正确的答案会输出


my name is <ViewController: 0x7ff6d9f31c50>

内存地址每次运行都不同,但是前面一定是ViewController。why?

我们把代码改变一下,打印更多的信息出来。


- (void)viewDidLoad {
    [super viewDidLoad];
    
    NSLog(@"ViewController = %@ , 地址 = %p", self, &self);
    
    id cls = [Sark class];
    NSLog(@"Sark class = %@ 地址 = %p", cls, &cls);
    
    void *obj = &cls;
    NSLog(@"Void *obj = %@ 地址 = %p", obj,&obj);
    
    [(__bridge id)obj speak];
    
    Sark *sark = [[Sark alloc]init];
    NSLog(@"Sark instance = %@ 地址 = %p",sark,&sark);
    
    [sark speak];
    
}

我们把对象的指针地址都打印出来。输出结果:


ViewController = <ViewController: 0x7fb570e2ad00> , 地址 = 0x7fff543f5aa8
Sark class = Sark 地址 = 0x7fff543f5a88
Void *obj = <Sark: 0x7fff543f5a88> 地址 = 0x7fff543f5a80

my name is <ViewController: 0x7fb570e2ad00>

Sark instance = <Sark: 0x7fb570d20b10> 地址 = 0x7fff543f5a78
my name is (null)


// objc_msgSendSuper2() takes the current search class, not its superclass.
OBJC_EXPORT id objc_msgSendSuper2(struct objc_super *super, SEL op, ...)
    __OSX_AVAILABLE_STARTING(__MAC_10_6, __IPHONE_2_0);


objc_msgSendSuper2方法入参是一个objc_super *super。


/// Specifies the superclass of an instance. 
struct objc_super {
    /// Specifies an instance of a class.
    __unsafe_unretained id receiver;

    /// Specifies the particular superclass of the instance to message. 
#if !defined(__cplusplus)  &&  !__OBJC2__
    /* For compatibility with old objc-runtime.h header */
    __unsafe_unretained Class class;
#else
    __unsafe_unretained Class super_class;
#endif
    /* super_class is the first class to search */
};
#endif


所以按viewDidLoad执行时各个变量入栈顺序从高到底为self, _cmd, super_class(等同于self.class), receiver(等同于self), obj。

第一个self和第二个_cmd是隐藏参数。第三个self.class和第四个self是[super viewDidLoad]方法执行时候的参数。

在调用self.name的时候,本质上是self指针在内存向高位地址偏移一个指针。

从打印结果我们可以看到,obj就是cls的地址。在obj向上偏移一个指针就到了0x7fff543f5a90,这正好是ViewController的地址。

所以输出为my name is <ViewController: 0x7fb570e2ad00>。

至此,Objc中的对象到底是什么呢?

实质:Objc中的对象是一个指向ClassObject地址的变量,即 id obj = &ClassObject , 而对象的实例变量 void *ivar = &obj + offset(N)

加深一下对上面这句话的理解,下面这段代码会输出什么?


- (void)viewDidLoad {
    [super viewDidLoad];
    
    NSLog(@"ViewController = %@ , 地址 = %p", self, &self);
    
    NSString *myName = @"halfrost";
    
    id cls = [Sark class];
    NSLog(@"Sark class = %@ 地址 = %p", cls, &cls);
    
    void *obj = &cls;
    NSLog(@"Void *obj = %@ 地址 = %p", obj,&obj);
    
    [(__bridge id)obj speak];
    
    Sark *sark = [[Sark alloc]init];
    NSLog(@"Sark instance = %@ 地址 = %p",sark,&sark);
    
    [sark speak];
    
}


ViewController = <ViewController: 0x7fff44404ab0> ,  地址  = 0x7fff56a48a78
Sark class = Sark  地址  = 0x7fff56a48a50
Void *obj = <Sark: 0x7fff56a48a50>  地址 = 0x7fff56a48a48

my name is halfrost

Sark instance = <Sark: 0x6080000233e0>  地址 = 0x7fff56a48a40
my name is (null)

由于加了一个字符串,结果输出就完全变了,[(__bridge id)obj speak];这句话会输出“my name is halfrost”

原因还是和上面的类似。按viewDidLoad执行时各个变量入栈顺序从高到底为self,_cmd,self.class( super_class ),self ( receiver ),myName,obj。obj往上偏移一个指针,就是myName字符串,所以输出变成了输出myName了。

这里有一点需要额外说明的是,栈里面有两个 self,可能有些人认为是指针偏移到了第一个 self 了,于是打印出了 ViewController:



my name is <ViewController: 0x7fb570e2ad00>

其实这种想法是不对的,从 obj 往上找 name 属性,完全是指针偏移了一个 offset 导致的,也就是说指针只往下偏移了一个。那么怎么证明指针只偏移了一个,而不是偏移了4个到最下面的 self 呢?

obj 的地址是 0x7fff5c7b9a08,self 的地址是 0x7fff5c7b9a28。每个指针占8个字节,所以从 obj 到 self 中间确实有4个指针大小的间隔。如果从 obj 偏移一个指针,就到了 0x7fff5c7b9a10。我们需要把这个内存地址里面的内容打印出来。

LLDB 调试中,可以使用examine命令(简写是x)来查看内存地址中的值。x命令的语法如下所示:
x/

n、f、u是可选的参数。
n 是一个正整数,表示显示内存的长度,也就是说从当前地址向后显示几个地址的内容。

f 表示显示的格式,参见上面。如果地址所指的是字符串,那么格式可以是s,如果地十是指令地址,那么格式可以是 i。

u 表示从当前地址往后请求的字节数,如果不指定的话,GDB默认是4个bytes。u参数可以用下面的字符来代替,b表示单字节,h表示双字节,w表示四字节,g表示八字节。当我们指定了字节长度后,GDB会从指内存定的内存地址开始,读写指定字节,并把其当作一个值取出来。

我们用 x 命令分别打印出 0x7fff5c7b9a10 和 0x7fff5c7b9a28 内存地址里面的内容,我们会发现两个打印出来的值是一样的,都是 0x7fbf0d606aa0。

这两个 self 的地址不同,里面存储的内容是相同的。

所以 obj 是偏移了一个指针,而不是偏移到最下面的 self 。

最后

入院考试由于还有一题没有解答出来,所以医院决定让我住院一天观察。

未完待续,请大家多多指教。

推荐阅读:
刨根问底 Objective-C Runtime(1)- Self & Super